
M
c
o

J
M
a

b

a

A
R
R
A
A

K
T
H
M
A
C

1

i
s
e
a
p
t
m
i
a
g
a
w
fi
H
t

(

0
d

Journal of Chromatography A, 1235 (2012) 68– 76

Contents lists available at SciVerse ScienceDirect

Journal  of  Chromatography  A

j our na l ho me  p ag e: www.elsev ier .com/ locate /chroma

ulti-wavelength  high-performance  liquid  chromatographic  fingerprints  and
hemometrics  to  predict  the  antioxidant  activity  of  Turnera  diffusa  as  part
f  its  quality  control

.  Ricardo  Lucio-Gutiérreza, Aurora  Garza-Juárezb,  J.  Coelloa,∗, S.  Maspocha,
.L.  Salazar-Cavazosb,  Ricardo  Salazar-Arandab,  Noemi  Waksman  de  Torresb

Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, C.P. 64460, Monterrey, Nuevo León, Mexico

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 23 December 2011
eceived in revised form 16 February 2012
ccepted 17 February 2012
vailable online 23 February 2012

eywords:

a  b  s  t  r  a  c  t

The  determination  of the  antioxidant  activity  of  Turnera  diffusa  using  partial  least  squares  regression
(PLSR)  on  chromatographic  data  is  presented.  The  chromatograms  were  recorded  with  a  diode  array
detector  and,  for each  sample,  an enhanced  fingerprint  was  constructed  by  compiling  into  a  single
data  vector  the  chromatograms  at  four  wavelengths  (216,  238,  254  and  345  nm).  The  wavelengths  were
selected  from  a  contour  plot,  in  order  to obtain  the  greater  number  of  peaks  at each  of  the  wavelengths.
A  further  pretreatment  of  the  data  that  included  baseline  correction,  scaling  and  correlation  optimized
urnera diffusa
PLC-fingerprints
ulti-wavelength

ntioxidant activity
hemometrics

warping  was  performed.  Optimal  values  of  the  parameters  used  in  the warping  were  found  by  means
of  simplex  optimization.  A PLSR  model  with  four  latent  variables  (LV)  explained  52.5%  of  X variance
and  98.4%  of  Y,  with  a  root  mean  square  error  for cross  validation  of 6.02.  To  evaluate  its  reliability,  it
was  applied  to  an  external  prediction  set,  retrieving  a  relative  standard  error  for  prediction  of  7.8%.  The
study  of  the  most  important  variables  for the  regression  indicated  the chromatographic  peaks  related  to
antioxidant  activity  at  the  used  wavelengths.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Increasing interest in the use of plant-based products is lead-
ng to a fast-growing market for herbal pharmaceuticals, dietary
upplements, nutraceuticals, and functional foods [1].  This major
xpansion in the use of herbal medicines raises many concerns
bout their quality control, as it could lead to massive and unsu-
ervised collection without any consideration of the quality of
he raw materials [2].  Moreover, assuring the quality of a herbal

edicine is a major challenge in the phytopharmaceutical and food
ndustries, because the chemical content of herbs varies greatly
ccording to a wide range of factors such as species variation,
rowth location, climate, harvesting season, storage conditions
nd processing [3,4]. In order to cope with the problems related
ith this chemical complexity, the researchers adopted the herbal

ngerprinting approach, which has been accepted by the World
ealth Organization (WHO), the US Food and Drug Administra-

ion (FDA) and European Medicines Agency (EMA), among other

∗ Corresponding author. Tel.: +34 93 581 2122; fax: +34 93 581 2357.
E-mail addresses: jrluciog@yahoo.com (J.R. Lucio-Gutiérrez), jordi.coello@uab.es

J. Coello).

021-9673/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2012.02.042
organizations, as a strategy for the assessment of herbal medicines
[5–9].

The chromatographic fingerprint of a plant material is a chro-
matogram obtained by a defined procedure where as many
compounds as possible are separated and that represents the
chemical characteristics of the herb; usually, samples with similar
fingerprints have similar properties [5,10]. Thus, a chromato-
graphic fingerprint could be used to determine the identity,
authenticity, batch-to-batch consistency of the herbal medicine
and it is also useful to overcome the limitations when using
few marker compounds [11,12].  Frequently, one or two markers,
principally the pharmacologically active constituents of a plant
material, are employed for quality control of herbal medicines [12].
However, this type of analysis may  not offer a complete char-
acterization of these products, because their therapeutic effects
could originate from many components. Moreover, synergic or
antagonist interactions are also ignored in this type of analysis;
thus, it is not feasible to analyze each compound individually [13].
Among the chromatographic methods for fingerprinting herbal

drugs, high performance liquid chromatography hyphenated to
diode array detector (HPLC-DAD) is still the most popular [10,14].
Besides studying the identities of herbs, some publications explore
the usefulness of fingerprints collected by HPLC-DAD as a tool

dx.doi.org/10.1016/j.chroma.2012.02.042
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:jrluciog@yahoo.com
mailto:jordi.coello@uab.es
dx.doi.org/10.1016/j.chroma.2012.02.042
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o predict the therapeutic properties of medicinal plants. For
xample, Dumarey et al. [5] and Van Nederkassel [15] showed a
orrelation between the chromatographic fingerprint (at 280 nm)
f green tea samples and their antioxidant capacity, as a mea-
ure of protective effects caused by the tea. However, in the
orrelation of the fingerprints with a possible biological activ-
ty, chemists usually use a single chromatogram from a fixed

avelength; so a lot of information contained at other wave-
engths may  be discarded, neglecting chromatographic peaks
hat are useful to characterize the properties of a medicinal
erb.

Recently, a strategy that involves the use of several wavelengths
or the construction of enhanced herbal fingerprints has been used
or purposes of classification and counterfeit detection to Valeriana
fficinalis [16]. We  have used the enhanced fingerprints strategy
n this work, to improve the prediction of the biological activity of
erbal medicines as part of their whole quality control. In order to
how the usefulness of this multi-wavelength approach, we have
pplied the procedure to Turnera diffusa chromatograms. This plant
as selected because organizations (EMA, FDA, etc.) have yet to

eport a definitive analytical methodology for its quality control
nd because it was shown that many of the products containing T.
iffusa in the Mexican market are inconsistent, according to reports
here fingerprints obtained by TLC and HPLC-DAD were applied

2,17,18]. A previous study about correlating the chromatographic
ngerprints of T. diffusa (at 254 nm)  and its antioxidant activity
sing PLSR was performed by Garza-Juárez et al. [13]; however,
he limitations when using a single wavelength were evident in
he results of the mathematical model and the predictions, obtain-
ng a r2 from the cross-validation of 0.80, a bias with a slight
endency to negative values and poor performance of the model
hen predicting an external sample set. Furthermore, the reten-

ion time shifts correction was performed manually and therefore
he alignment preprocessing was time consuming. On the other
and, the proposed multi-wavelength strategy should improve the
erformance of the PLSR model and make it possible to obtain
ore robust predictions. Moreover, correlation optimized warping

COW) algorithm is applied to facilitate the alignment preprocess-
ng.

T. diffusa Wild. Ex Schult,  also known as damiana, is a small shrub
elonging to the family Turneraceae; it grows to a height of 1–2 m
nd bears 10–25 cm long aromatic, serrated leaves. Small yellow
owers bloom in summer, and are followed by small fruit with a
weet smell and a fig-like flavor. The medicinal part of the plant is its
eaves which are harvested, according to ethnopharmacy practices,
uring the flowering season [18,19].  The damiana shrub can be
ound throughout Mexico, Central America, the Caribbean islands
nd parts of South America. It has several traditional uses as an
phrodisiac, for hepatic ailments, depression, anxiety, neurosis, as
xpectorant, stimulant and tonic; it is also used to flavor desserts,
everages, candies, etc. [20]. In addition, has been reported that
he aerial part (stems and leaves) showed good antioxidant activity,
imilar to that exhibited by quercetin, used as a control [21]. Antiox-
dants are known to reduce the risks of certain types of cancer and

any chronic degenerative diseases; so, there is an especially fast-
rowing interest in the search for naturally occurring antioxidants,
n order to obtain diverse products that are at most used as dietary
upplements [22,23].  We  consider that the attributed therapeu-
ic effects of damiana are related, at least to some extent, with its
ntioxidant activity; thus, it can be a measure for the effectiveness
nd for the quality of the herb. Multi-wavelength chromatographic
ngerprints are a good choice to predict the antioxidant activity

f damiana, and other medicinal herbs, because they represent
ost of the constituents of herbal products and because it is

dvantageous to handle these enhanced fingerprints using several
hemometric methods.
atogr. A 1235 (2012) 68– 76 69

2. Materials and methods

2.1. Chemicals and samples

HPLC-grade methanol (MeOH) was purchased from Fisher
Scientific (Fair Lawn, NJ, USA). Deionized water was  obtained
from Laboratorios Monterrey S.A. de C.V. (Monterrey, NL, Mexico).
Trifluoroacetic acid (TFA), reagent grade MeOH and ethanol
(EtOH) were purchased from Fermont (Monterrey, NL, Mexico).
The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and the 2-(3,4-
dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one (Quercetin),
used to obtain the scavenging activity by spectrophotometry, were
purchased from Sigma (Monterrey, NL, Mexico). In order to include
as many sources of sample variability as possible, regardless of
the specific geographical origin, forty samples of T. diffusa were
collected in different regions of Mexico between December 2005
and January 2009; the samples were authenticated and voucher
specimens deposited in the herbarium of the Facultad de Cien-
cias Biológicas, Universidad Autónoma de Nuevo León. Damiana
samples were stored protected from bright light and moisture at
laboratory temperature (27 ◦C approx.) and allowed to dry.

2.2. Preparation of the extracts

The aerial parts (leaves and stems) of the dried plants were
ground and then passed through a 40 mesh sieve. Each sample pow-
der (1.00 g) was accurately weighed and extracted three times using
5 mL  9:1 (v/v) ethanol–water solution every time, at 27 ◦C, by vor-
tex mixing for 3 min  and respective solutions were combined. The
final extract was  filtered through a Whatman No. 40 filter paper and
evaporated to dryness under reduced pressure by rotary evapora-
tion at 37 ± 2 ◦C. Before use, 15 mg  of the sample extract was taken
and dissolved in 1 mL  of MeOH and filtered through a 0.45 �m nylon
acrodisc (Waters Corporation).

2.3. Instrumentation and analytical procedures

HPLC analyses were performed with a Waters 2695 Alliance
system, equipped with a 2996 UV–Vis diode array detector, an
autosampler, a thermostated column compartment, a vacuum
degasser and a PC with Empower software. The radical scavenging
activity of damiana extracts was  obtained using a UV–Vis Beckman
DU-7500 spectrophotometer.

2.3.1. HPLC-DAD procedure
The separation was achieved using an AccQ Tag C18 column;

3.9 mm × 150 mm,  4 �m particle size (from Waters Corporation)
operated at 30 ◦C. The mobile phase consisted of (A) 0.1% TFA in
water and (B) MeOH. Before use, the mobile phase constituents
were degassed and filtered through a 0.45 �m nylon filter (Waters
Corporation, Milford, MA,  USA). The gradient elution sequence was
used as follows: initial 30% of B; then, the percentage of B was
increased from 30 to 70% over 30 min  and held constant for 5 min.
Each run was  followed by an equilibration period of 10 min  with
the initial conditions (70% A, 30% B). Before the first injection, the
column was  preconditioned for 1 h with the initial mobile phase.
The flow rate was  kept at 0.4 mL  min−1 and the injection volume
was  10 �L. The DAD was set at 254 nm to follow the elution profile,
UV spectra were collected in the range 210–400 nm at 1.2 nm steps
and the sampling rate of the detector was 0.01667 min.

2.3.2. Determination of the scavenging activity of DPPH free

radical using spectrophotometry

An assay of DPPH scavenging activity using spectrophotometry
was  conducted according to Leu et al. [24], with some modifica-
tions. First, the extract was  redissolved in ethanol (1 mg  mL−1), and
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Fig. 1. Schema of the construction of the enhanced fingerprints. S1, S2, . . .,  Sn; represent original two-dimensional chromatographic data (retention time [RT] × wavelengths)
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rom  different herbal extracts. X is the newly constructed data matrix of enhanced
arping, segment length and slack parameter, respectively. Xaligned, is the final data

PLSR) models.

ifferent concentrations (0.2–200 �g mL−1) of each extract were
sed. In a total volume of 1 mL,  the assay mixture contained 500 �L
f the extract and 500 �L of DPPH (125 �M in ethanol). The assay
ixture was shaken and allowed to stand at room temperature in

arkness for 30 min. The absorbance was then measured at 517 nm.
uercetin was used as a positive control. The capacity to scavenge

he DPPH radical was calculated as follows:

adical scavenging activity (%) =
(

[A − B]
A

)
× 100 (1)

here A is the absorbance of the negative control (DPPH plus
thanol), and B is the absorbance of the sample (DPPH, ethanol plus
ample). Concentration was plotted vs. percentage of scavenging
nd the effective concentration of the extract that scavenged 50% of
PPH radicals (EC50) was calculated by interpolation; so, the activ-

ty was expressed as EC50. The antioxidant activities of the samples
nd the respective chromatograms were obtained simultaneously
o avoid possible variations in the results from the DPPH test, due
o the storage time of the extracts.

.4. Data analysis

The used data resulted from a study performed by Garza-Juárez
t al. [13]. HPLC-DAD data of forty damiana samples were exported
orm Empower software in ASCII format and imported to MATLAB
.9 (The MathWorks, Inc); which was used for handling chromato-
raphic data matrices and to perform their scaling. Data binning
co-adding), baseline correction, unfolding and the construction
f mathematical models were performed using PLS-Toolbox 6.2
Eigenvector Research). The selection of reference chromatogram

sed in the alignment, the simplex optimization for establishing
egment length and slack size and correlation optimized warping
COW) alignment preprocessing were performed using the codes
or Matlab developed by Skov [25] and by Tomasi [26], which are
reely available from http://www.models.kvl.dk/.
prints. COW, N and t are the acronyms and the symbols for correlation optimized
x to be used in the construction of exploratory data analysis (PCA) and quantitative

2.4.1. Construction of the multi-wavelength fingerprints
Fig. 1 depicts a general procedure of the approach used for

the construction of enhanced herbal fingerprints. A data matrix
of a given sample (retention time × wavelengths) is obtained by
taking the chromatograms in a range of wavelengths; then, the
matrix transpose is calculated in order to subsequently apply the
row-wise algorithms to the chromatograms, e.g. data co-adding
(binning). Next, the strategy comprises of the selection of both
those wavelengths where the chemical constituents of the herbal
extract exhibit maximum absorbance, simultaneously presenting
a larger number of peaks, and the retention time intervals that
contain informative signals and prevent the inclusion of noise.
Then, the retrieved chromatographic profiles are subjected to pre-
treatments to minimize unwanted chromatographic variations, e.g.
background correction, and they are reshaped into a single data
vector, which is the final fingerprint of the sample. The enhanced
fingerprints obtained from all considered samples are compiled
into a new chromatographic data matrix that, after alignment if
needed, is used to construct exploratory and regression models
by means of Principal Component Analysis (PCA) and Partial Least
Squares Regression (PLSR). Since with this strategy it is possible to
include as many wavelengths as selected by the analyst, most of the
relevant chromatographic information would be considered in the
construction of mathematical models and therefore, this approach
could attain better performance than that obtained using a single
wavelength; especially in the quantitative results from the PLSR
when predicting a specific biological activity.

2.4.2. Enhanced fingerprints alignment by COW
Before the construction of the final matrix of enhanced finger-

prints that will be used in antioxidant activity prediction, the COW

algorithm was  applied to correct the retention time shifts among
the different samples. Using the maximum cumulative product of
correlation coefficients, a reference data vector was  selected from
the enhanced fingerprints of authenticated damiana samples. All

http://www.models.kvl.dk/
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ig. 2. Above, a 3D chromatogram plot (min × nm × absorbance [A.U.]) from a dam
fter  selection of the retention time interval.

he other samples were aligned with regard to this reference. Seg-
ent length and slack size values were found by means of a simplex

esign, performed within an optimization space defined as follows:
egment from 45 to 135 and slack from 4 to 40. These numbers
ere chosen according to the observed peak widths and shifts on

he chromatograms. The number of starts in the grid search was
et to 5, the maximum number of optimization steps to 50 and the
raction of maximal deviation from center in COW alignment to
5%. The theory for the algorithms involved in reference selection
nd COW optimization can be consulted in [25].

.4.3. Principal component analysis
PCA is a well known bilinear modeling method which gives

n interpretable overview of the main information in a multidi-
ensional data table by extracting and displaying the existing

ystematic variation. The decomposition of the chromatographic
ata table is performed according to the following equation:

 = TPT + E (2)

here X is the final matrix of enhanced fingerprints, T is the scores
atrix with as many rows as the original data, PT corresponds to

he loadings matrix transpose with as many columns as the original
ata and E is an error matrix [27]. The number of columns in the
cores matrix corresponds to the principal components (PCs) that
re calculated to describe the variance of the data. So, the informa-
ion carried by the original variables is compressed into a smaller
umber of uncorrelated variables; i.e., the principal components.
y plotting the scores, we are able to detect and interpret sample
atterns, groupings, similarities and differences, and to discover
utliers. In addition, PCA was carried out to verify the usefulness of
he warping performed by evaluating the model results before and
fter conducting the alignment.

.4.4. Partial least squares regression

PLSR is used to find the inner relationship between independent

ariables (X) and dependent variables (Y), which are simultaneously
odeled by taking into account not only X variance, but the covari-

nce between X and Y [28]. In our case, the X matrix is composed
ample and its respective contour plot below; (a) complete chromatogram and (b)

of the enhanced fingerprints and the Y vector is constructed with
the reference values of antioxidant activity (EC50) obtained by the
DPPH assay. Then, X and Y are decomposed in a product of another
two  matrices of scores and loadings; as described by the following
equations:

X = TPT + E (3)

Y = UQ T + F (4)

where TPT approximates to the chromatographic data and UQT to
the true Y values; notice that the relationship between T and U
scores is a summary of the relationship between X and Y. The
terms E and F from the equations are error matrices. Hence, the
PLS algorithm attempts to find factors (called Latent Variables)
that maximize the amount of variation explained in X that is rele-
vant for predicting Y; i.e., capture variance and achieve correlation
[29]. Cross-validation (CV) was used when PCA and PLSR calibra-
tion models were developed. The optimum number of factors was
determined by the minimum value of predicted residual error sum
of squares (PRESS) criterion [30]. Statistics calculated for the cali-
bration model included root mean square error of cross validation
(RMSECV) and determination coefficient r-squared.

3. Results and discussion

3.1. Performance of DPPH assay and HPLC method

The percentage reduction of DPPH radical exhibited by the
different concentrations of a given sample was determined and
subsequently its EC50 was  calculated; each sample measurement
was  made in triplicate, obtaining RSD values between 0.1 and 18.1%.
The precision of the chromatographic method was evaluated con-
sidering relative retention times, relative peak heights and relative

areas of 12 peaks common to all the chromatograms, which span
over the whole chromatographic region, using the methodology
reported in [18]. The results expressed as RSD were between 0.1
and 2.8% for retention times, 2.3 and 12.0% for the relative areas,
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ig. 3. Chromatograms from a T. diffusa sample at wavelengths used in enhanced fi
orrection and scaling. A.U. corresponds to absorbance units and Arb. units means a

nd 2.6 and 16.0% for the relative heights. Thus, all results indicated
cceptable performance of the analytical procedures used.

.2. Enhanced fingerprints construction and alignment

The chromatograms were very complex, showing about 46
eaks and it is evident that some of them are not fully resolved.
or each sample, a chromatographic data matrix with dimensions
700 × 158 (retention time × wavelengths) was obtained. Fig. 2a
hows a raw 3D chromatogram plot from a damiana sample with its
espective contour plot. Using the contour plot of the original chro-
atographic data, it was difficult to obtain information because of

he high intensity of retention times from 0 to 7.66 min, a broad and
oisy signal that corresponds to the elution front; which contains
everal non-resolved compounds, and therefore it was  removed
rom further calculations. Also, retention times above 35.86 min
ere removed because there was no signal. In this way, the bet-

er resolved and more stable peaks in terms of area were in the

elected retention time interval and the inclusion of noise or non-
nformative signals were avoided in the mathematical models. The
imensions of the matrix are now (1692 × 158). Fig. 2b shows the
hromatogram in the selected retention time interval; now, from
rint construction; (a) before data pretreatment and (b) after data binning, baseline
ry units. (c) Typical appearance of an enhanced fingerprint from T. diffusa.

the contour plot it is possible to observe that at different wave-
lengths there are different peaks of different intensities. Most of the
chemical constituents detected in extracts of damiana showed the
largest responses at four wavelengths: 216, 238, 254 and 345 nm;
consequently, the chromatograms from these wavelengths were
used to construct the enhanced fingerprint of each sample. Thus, a
greater number of peaks of the highest intensity were included and
wavelengths with redundant information were excluded; notice
that not all peaks are present at all the wavelengths, see Fig. 3a.
Next, after performing the data matrix transpose, the retention time
dimension was  co-added, i.e. adjacent variables were combined,
using the mean value from groups of 2 variables and matrix dimen-
sions were (158 × 847 [wavelengths × retention time]); then, the
four working wavelengths were retrieved and the final matrix
dimensions were (4 × 847). Fig. 3a shows the variations presented
by the chromatograms from a T. diffusa sample at the selected
wavelengths used to construct the enhanced fingerprints. The most
evident of these variations was the change in baseline slope; it was

also evident in the 3D chromatogram from Fig. 2b. There was a
slight tendency towards negative values at 238, 254 and 345 nm
and a larger tendency to negative values at 216 nm.  In such condi-
tions, it was  not viable to unfold the chromatographic data matrix
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Fig. 4. (a) Section from several enhanced fingerprints before correlation optimized warping and (b) the same samples after alignment. (c) and (d) Score plots of principal
c nd aft
v

t
b
w
s
r
z
t
w
h
t
t
n

omponent 1 (PC1) vs. PC2 from an overall PCA of enhanced fingerprints before a
alues  (EC50) for each sample before warping and (f) after warping.

o construct the enhanced fingerprint vector; so, the data had to
e corrected. Background was eliminated by means of asymmetric
eighted least squares method using a cubic polynomial, which

ubtracts a baseline from a chromatogram with the constraint that
esiduals below zero be weighted more heavily than those above
ero; details about the method can be found elsewhere [31]. Fur-
hermore, the variability in scaling among the damiana samples
as minimized applying a range scale of each variable such that the

ighest value of the background corrected data vectors was +1 and
he lowest 0. Fig. 3b shows the results of applying the pretreatments
o vectors of the chromatographic data matrix. The data bin-
ing kept the chromatographic information, i.e. did not affect the
er alignment, respectively. (e) Plot of the scores from PC1 vs. antioxidant activity

chromatogram’s features, and reduced the number of data points in
the retention time dimension of the matrix. The baseline correction
successfully removed the tendencies exhibited by the background
of the chromatograms; and scaling each enhanced fingerprint to
unit, maintained intensity ratios among the four wavelengths used
to build the enhanced fingerprint and avoided discontinuities in
absorbance values when the four wavelengths were unfolded. So,
the corrected data matrix was unfolded along the retention time

dimension to generate a single data vector with dimensions of
1 × 3388, which is the enhanced fingerprint of the sample; Fig. 3c.
As a result of the matrix unfolding, the retention time dimension
was  lost and had to be replaced with a linear index; nonetheless,
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he units of the linear index can be translated into retention time
nits. As expected, the enhanced fingerprint presented more sets of
eaks than when exhibited using a single wavelength. Finally, data
ectors of all samples were ordered into a matrix for subsequent
lignment and construction of the models.

The retention time shift correction was the final data pre-
reatment to be performed; input parameters were the enhanced
ngerprint used as a reference, the segment length and a slack size.
implex optimization to find the working parameters for the warp-
ng retrieved a segment length of 45 and a slack size of 23; Fig. 4a
nd b presents the original and the aligned enhanced fingerprints
f several samples using these warping parameters. The retention
ime shifts were properly corrected and peaks and features were
ot distorted by the use of the COW algorithm. The scores plot from

 PCA performed before the alignment (Fig. 4c) shows two  main
roups of samples separated by the PC1; the group in the negative
core values of PC1 is also split into two subgroups. Analysis of the
oadings from this model suggested that the observed score plot

s mainly due to retention time shifts, since a loadings plot (not
hown) presented a fuzzy aspect and depicted shapes similar to
hose obtained when calculating a derivative. Fig. 4d is the scores
lot obtained after performing the retention time shifts correction;

Fig. 5. (�) Calibration; (H) prediction. Measured vs. Predicted plot from the antiox-
idant activity (EC50) of each sample; regression line is plotted.

ig. 6. (a) Loadings plot on LV1 from chromatographic variables used. (b) Variable importance in projection (VIP) scores for EC50; variables with values above the horizontal
ashed  line being considered important for the model. (c) Indication of the relevant peaks for the prediction of the EC50 value, marked by asterisks, on chromatograms from
n  enhanced fingerprint of a T. diffusa sample.
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he split of the two subgroups is no longer present and the loadings
lot more resembled a chromatogram, suggesting that retention
ime shifts were corrected successfully. In order to find out whether
here is some kind of relationship between the principal compo-
ents and the antioxidant activity, the scores from each calculated
rincipal component of the PCA vs. the antioxidant activity were
lotted. Projection of the samples on the PC1 axis is related with
C50 values; when plotting the scores from PC1 vs. the antioxidant
ctivity, after warping, a linear relationship was evident, see Fig. 4f.
owever, the same plot before alignment does not show any appar-
nt relationship, Fig. 4e. No relationship was obvious between other
rincipal components and EC50 values.

.3. Antioxidant activity (EC50) prediction by PLSR

A PLSR model to relate antioxidant activity and chromatographic
ata was constructed with the enhanced fingerprints of 30 sam-
les; so, an X matrix of dimensions (30 × 3388) and its respective

 vector of activities were used. The X data were mean centered
nd a cross-validation was performed, applying the venetian blinds
ethod with 6 data splits [32]. A model with four latent variables

LV) was chosen according to the minimum PRESS criterion, achiev-
ng an explained variance of 52.5% for X variables and 98.4% for Y; a
MSECV of 6.02 and r2 from CV of 0.928 were obtained. In any case,
utliers were not detected during model construction. To evaluate
he performance of the model, 10 samples not employed for cali-
ration were used as an external prediction set; the values of these
amples span over the calibration range of antioxidant activity.
ig. 5 shows the EC50 measured vs. EC50 predicted plot that includes
alibration and prediction sets, with a slope of 0.972 (s = 0.022)
nd an intercept of 0.88 (s = 0.94), indicating that predicted values
re coincident with the measured ones. Relative standard error of
rediction (RSEP) was calculated as:

RSEP  =
(∑

[ycalc − yexp]2∑
y2

exp

)1/2

× 100 (5)

here ycalc is EC50 found by PLSR, yexp the activity value found by
PPH assay; summation extends to all the prediction samples [33].
he RSEP value obtained using enhanced fingerprints was  7.8%,
hile that calculated from reported data in reference [13], using

hromatograms at 254 nm,  was 20.5%.
The first latent variable explains 91.3% of Y (EC50) variance,

uggesting that LV1 contains the most information to predict
ntioxidant activity. Fig. 6a and b shows the loadings plot of LV1
nd a plot of variable importance in projection (VIP) scores for
C50, respectively. Those variables that have an important load-
ng contribution and high VIP value belong to compounds that are
ighly related with antioxidant activity. However, if these variables

ncrease or decrease the predicted EC50 values cannot be defined,
ecause negative loading values do not necessarily mean that those
oncerned variables have a negative influence on the predicted
esult; so, it is not possible to assign an antagonist or synergist
ole to the peaks related to those variables. After reconstructing
he chromatograms from their respective enhanced fingerprints, it
as possible to assign the important variables found in the regres-

ion (VIP > 5) to specific retention times at each of the wavelengths.
hese retention times corresponded to peak apexes. Fig. 6c shows
he four chromatograms of a sample; all the relevant peaks found
tudying Fig. 6a and b were marked on it, regardless of whether the
eak is present or not in that particular sample. Recently, Perez-
eseguer et al. [2] purified from damiana extracts a compound
hat showed the best antioxidant activity in a TLC assay at 254 nm;
t was identified as 8-C-�-[6-deoxy-2-O-(�-1-rhamnopyranosyl)-
ylo-hexopyranos-3-uloside]. This is the only natural source from
hich this compound has been reported, and it was present in 41

[

[

atogr. A 1235 (2012) 68– 76 75

native damiana samples analyzed and is one of those marked in this
work as important at the same wavelength (RT of 19.40 min), but
there are other compounds influencing the prediction of the EC50
value. Any compound marked as “important”, at any wavelength,
contributes significantly to the regression, so it deserves further
investigation.

4. Conclusions

The enhanced chromatographic fingerprinting approach used in
this work, combined with PLSR, produces very good results when
predicting the antioxidant activity from complex chromatographic
data of damiana samples. Contour plot is a useful tool for selection
of proper working wavelengths in the construction of the enhanced
fingerprints and suitable pretreatments may remove unwanted
baseline variations. The alignment of complex chromatographic
data compiled from several wavelengths was  possible using cor-
relation optimized warping. Thus, the introduction of noise and
mathematical artefacts was  avoided.

The constructed PLSR model explains a large amount of X and Y
variance. A study of the importance of the regression variables in
scores projection and loadings of LV1 (by far the most important
for explaining Y values) makes it possible to find which chro-
matographic peaks are most important for the regression at the
wavelengths chosen, which is a clue for finding which compounds
are related to antioxidant activity.
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